Nonexistence of Voting Rules That Are Usually Hard to Manipulate
نویسندگان
چکیده
Aggregating the preferences of self-interested agents is a key problem for multiagent systems, and one general method for doing so is to vote over the alternatives (candidates). Unfortunately, the Gibbard-Satterthwaite theorem shows that when there are three or more candidates, all reasonable voting rules are manipulable (in the sense that there exist situations in which a voter would benefit from reporting its preferences insincerely). To circumvent this impossibility result, recent research has investigated whether it is possible to make finding a beneficial manipulation computationally hard. This approach has had some limited success, exhibiting rules under which the problem of finding a beneficial manipulation is NPhard, #P-hard, or even PSPACE-hard. Thus, under these rules, it is unlikely that a computationally efficient algorithm can be constructed that always finds a beneficial manipulation (when it exists). However, this still does not preclude the existence of an efficient algorithm that often finds a successful manipulation (when it exists). There have been attempts to design a rule under which finding a beneficial manipulation is usually hard, but they have failed. To explain this failure, in this paper, we show that it is in fact impossible to design such a rule, if the rule is also required to satisfy another property: a large fraction of the manipulable instances are both weakly monotone, and allow the manipulators to make either of exactly two candidates win. We argue why one should expect voting rules to have this property, and show experimentally that common voting rules clearly satisfy it. We also discuss approaches for potentially circumventing this impos-
منابع مشابه
Manipulation Under Voting Rule Uncertainty1
An important research topic in the field of computational social choice is the complexity of various forms of dishonest behavior, such as manipulation, control, and bribery. While much of the work on this topic assumes that the cheating party has full information about the election, recently there have been a number of attempts to gauge the complexity of non-truthful behavior under uncertainty ...
متن کاملManipulation under voting rule uncertainty
An important research topic in the field of computational social choice is the complexity of various forms of dishonest behavior, such as manipulation, control, and bribery. While much of the work on this topic assumes that the cheating party has full information about the election, recently there have been a number of attempts to gauge the complexity of non-truthful behavior under uncertainty ...
متن کاملCan Approximation Circumvent Gibbard-Satterthwaite?
The Gibbard-Satterthwaite Theorem asserts that any reasonable voting rule cannot be strategyproof. A large body of research in AI deals with circumventing this theorem via computational considerations; the goal is to design voting rules that are computationally hard, in the worst-case, to manipulate. However, recent work indicates that the prominent voting rules are usually easy to manipulate. ...
متن کاملManipulation of Nanson's and Baldwin's Rules
Nanson’s and Baldwin’s voting rules select a winner by successively eliminating candidates with low Borda scores. We show that these rules have a number of desirable computational properties. In particular, with unweighted votes, it is NP-hard to manipulate either rule with one manipulator, whilst with weighted votes, it is NP-hard to manipulate either rule with a small number of candidates and...
متن کاملAn Empirical Study of the Manipulability of Single Transferable Voting
Voting is a simple mechanism to combine together the preferences of multiple agents. Agents may try to manipulate the result of voting by mis-reporting their preferences. One barrier that might exist to such manipulation is computational complexity. In particular, it has been shown that it is NP-hard to compute how to manipulate a number of different voting rules. However, NP-hardness only boun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006